Course Schedule

Below is our course schedule, which will almost certainly change as the course progresses. Details regarding evaluation due dates can be found below the table.

Week Date Session Title Suggested Readings
1 04-Jul Lecture Introduction ISL (python) 1, 2.1-2.3
04-Jul Tutorial No Tutorial ESL 1, 2.1-2.3, 2.6
2 07-Jul Lecture Review of basic math and LEC1, Linear Model ESL 3.1-3.2.2, ISL3.1-3.3
11-Jul Tutorial Validation Set ISL 5.1
11-Jul Lecture Cross-Validation, Regularized Linear Model ISL 5.1, 6.2, ESL3.41-3.43
3 14-Jul Lecture Gradient Descent, Classifcation, Logistic Regression ESL 4.4, ISL 2.2, 4.1-4.3
18-Jul Tutorial Numerical Experiments for GD and Logistic Regression
18-Jul Lecture Confusion Matrix, Convex Opt and Multiclass-Logistic Regression ESL 4.4, ISL 2.2, 4.1-4.3
4 21-Jul Midterm
25-Jul Tutorial GD with torch
25-Jul Lecture LDA, QDA and Naive Bayes ISL 4.4, ESL 4.1-4.32, MLAPP 4.1-4.2
5 28-Jul Lecture Moving beyond linearity ESL 61-6.2, ISL 10.1-10.2, 10.7

Assignments are to be submitted via Crowdmark.